Record Details

Seasonal flows of international British Columbia-Alaska rivers: The nonlinear influence of ocean-atmosphere circulation patterns

ScholarsArchive at Oregon State University

Field Value
Title Seasonal flows of international British Columbia-Alaska rivers: The nonlinear influence of ocean-atmosphere circulation patterns
Names Fleming, S. W. (creator)
Hood, E. (creator)
Dahlke, H. E. (creator)
O'Neel, S. (creator)
Date Issued 2016-01 (iso8601)
Note To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work. This is the publisher’s final pdf. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/advances-in-water-resources/
Abstract The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.
Genre Article
Topic Hydroclimatology
Identifier Fleming, S. W., Hood, E., Dahlke, H. E., & O'Neel, S. (2016). Seasonal flows of international British Columbia-Alaska rivers: the nonlinear influence of ocean-atmosphere circulation patterns. Advances in Water Resources, 87, 42-55. doi:10.1016/j.advwatres.2015.10.007

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press