Record Details

Hydrogeological responses to incoming materials at the erosional subduction margin, offshore Osa Peninsula, Costa Rica

ScholarsArchive at Oregon State University

Field Value
Title Hydrogeological responses to incoming materials at the erosional subduction margin, offshore Osa Peninsula, Costa Rica
Names Kameda, Jun (creator)
Harris, Robert N. (creator)
Shimizu, Mayuko (creator)
et al. (creator)
Date Issued 2015-09 (iso8601)
Note This is the publisher’s final pdf. The article is copyrighted by American Geophysical Union and published by John Wiley & Sons, Inc. It can be found at: http://agupubs.onlinelibrary.wiley.com/agu/journal/10.1002/%28ISSN%291525-2027/
Abstract Bulk mineral assemblages of sediments and igneous basement rocks on the incoming Cocos Plate at the Costa Rica subduction zone are examined by X-ray diffraction analyses on core samples. These samples are from Integrated Ocean Drilling Program Expedition 334 reference Site U1381, ∼ 5 km seaward of the trench. Drilling recovered approximately 100 m of sediment and 70 m of igneous oceanic basement. The sediment includes two lithologic units: hemipelagic clayey mud and siliceous to calcareous pelagic ooze. The hemipelagic unit is composed of clay minerals (∼50 wt.%), quartz (∼5 wt.%), plagioclase (∼5 wt.%), calcite (∼15 wt.%) and ∼30 wt.% of amorphous materials, while the pelagic unit is mostly made up of biogenic amorphous silica (∼50 wt.%) and calcite (∼50 wt.%). The igneous basement rock consists of plagioclase (∼50–60 wt.%), clinopyroxene (∼>25 wt.%), and saponite (∼15–40 wt.%). Saponite is more abundant in pillow basalt than in the massive section, reflecting the variable intensity of alteration. We estimate the total water influx of the sedimentary package is 6.9 m³/yr per m of trench length. Fluid expulsion models indicate that sediment compaction during shallow subduction causes the release of pore water while peak mineral dehydration occurs at temperatures of approximately ∼100°C, 40–30 km landward of the trench. This region is landward of the observed updip extent of seismicity. We posit that in this region the presence of subducting bathymetric relief capped by velocity weakening nannofossil chalk is more important in influencing the updip extent of seismicity than the thermal regime.
Genre Article
Topic CRISP
Identifier Kameda, J., Harris, R. N., Shimizu, M., Ujiie, K., Tsutsumi, A., Ikehara, M., ... & Kimura, G. (2015). Hydrogeological responses to incoming materials at the erosional subduction margin, offshore Osa Peninsula, Costa Rica. Geochemistry, Geophysics, Geosystems, 16(8), 2725-2742. doi:10.1002/2015GC005837

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press