Record Details

Southwest Atlantic water mass evolution during the last deglaciation

ScholarsArchive at Oregon State University

Field Value
Title Southwest Atlantic water mass evolution during the last deglaciation
Names Lund, D. C. (creator)
Tessin, A. C. (creator)
Hoffman, J. L. (creator)
Schmittner, A. (creator)
Date Issued 2015-05 (iso8601)
Note This is the publisher’s final pdf. The published article is published by John Wiley & Sons Ltd. and copyrighted by American Geophysical Union. It can be found at: http://agupubs.onlinelibrary.wiley.com/agu/journal/10.1002/%28ISSN%291944-9186/
Abstract The rise in atmospheric CO₂ during Heinrich Stadial 1 (HS1; 14.5–17.5 kyr B.P.) may have been driven by the release of carbon from the abyssal ocean. Model simulations suggest that wind-driven upwelling in the Southern Ocean can liberate ¹³C-depleted carbon from the abyss, causing atmospheric CO₂ to increase and the δ¹³C of CO₂ to decrease. One prediction of the Southern Ocean hypothesis is that water mass tracers in the deep South Atlantic should register a circulation response early in the deglaciation. Here we test this idea using a depth transect of 12 cores from the Brazil Margin. We show that records below 2300 m remained ¹³C-depleted until 15 kyr B.P. or later, indicating that the abyssal South Atlantic was an unlikely source of light carbon to the atmosphere during HS1. Benthic δ¹⁸O results are consistent with abyssal South Atlantic isolation until 15 kyr B.P., in contrast to shallower sites. The depth dependent timing of the δ¹⁸O signal suggests that correcting δ¹⁸O for ice volume is problematic on glacial terminations. New data from 2700 to 3000 m show that the deep SW Atlantic was isotopically distinct from the abyss during HS1. As a result, we find that mid-depth δ¹³C minima were most likely driven by an abrupt drop in δ¹³C of northern component water. Low δ¹³C at the Brazil Margin also coincided with an ~80‰ decrease in Δ¹⁴C. Our results are consistent with a weakening of the Atlantic meridional overturning circulation and point toward a northern hemisphere trigger for the initial rise in atmospheric CO₂ during HS1.
Genre Article
Topic stable isotopes
Identifier Lund, D. C., Tessin, A. C., Hoffman, J. L., & Schmittner, A. (2015). Southwest Atlantic water mass evolution during the last deglaciation. Paleoceanography, 30 (5), 477-494. doi:10.1002/2014PA002657

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press