Record Details
Field | Value |
---|---|
Title | RELATIVE INFLUENCE OF TRANS-PACIFIC AND REGIONAL ATMOSPHERIC TRANSPORT OF PAHS IN THE PACIFIC NORTHWEST, USA |
Names |
Lafontaine, Scott
(creator) Schrlau, Jill (creator) Butler, Jack (creator) Jia, Yuling (creator) Harper, Barbara (creator) Harris, Stuart (creator) Bramer, Lisa M. (creator) Waters, Katrina M. (creator) Harding, Anna (creator) Simonich, Staci L. Massey (creator) |
Date Issued | 2015 (iso8601) |
Note | This is an author's in-press, peer-reviewed manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society and after publication, can be found at: http://pubs.acs.org/journal/esthag |
Abstract | The relative influences of trans-Pacific and regional atmospheric transport on measured concentrations of polycyclic aromatic hydrocarbons (PAHs), PAH derivatives [Nitro- (NPAH) and Oxy-(OPAH)], organic carbon (OC), and Particulate Matter (PM) less than 2.5 μm in diameter (PM₂.₅) were investigated in the Pacific Northwest, USA in 2010-2011. Ambient high volume PM₂.₅ air samples were collected at two sites in the Pacific Northwest: 1.) Mount Bachelor Observatory (MBO) in the Oregon Cascade Range (2763 m above sea level (asl)) and 2.) Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the Columbia River Gorge (CRG) (954 m asl). At MBO, the 1,8-dinitropyrene concentration was significantly positively correlated with the time a sampled air mass spent over Asia, suggesting that this NPAH may be a good marker for trans-Pacific atmospheric transport. At CTUIR, NOx, CO₂, and SO₂ emissions from a 585 MW coal fired power plant, in Boardman OR, were found to be significantly positively correlated with PAH, OPAH, NPAH, OC, and PM₂.₅ concentrations. By comparing the Boardman Plant operational time frames when the plant was operating to when it was shut down, the plant was found to contribute a large percentage of the measured PAH (67%), NPAH (91%), OPAH (54%), PM₂.₅ (39%) and OC (38%) concentrations at CTUIR and the CRG prior to Spring 2011 and likely masked trans-Pacific atmospheric transport events to the CRG. Upgrades installed to the Boardman Plant in the spring of 2011 dramatically reduced the plant’s contribution to PAH and OPAH concentrations (by ~72% and ~40%, respectively) at CTUIR and the CRG but not NPAH, PM₂.₅ or OC concentrations. |
Genre | Article |
Topic | PHA |
Identifier | Lafontaine, S., Schrlau, J., Butler, J., Jia, Y., Harper, B., Harris, S., … & Simonich, S. L. M. (2015). Relative Influence of Trans-Pacific and Regional Atmospheric Transport of PAHS in the Pacific Northwest, USA. [Article in Press]. Environmental Science & Technology. |