Record Details

A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families

ScholarsArchive at Oregon State University

Field Value
Title A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families
Names Miadlikowska, Jolanta (creator)
Kauff, Frank (creator)
Högnabba, Filip (creator)
Maddison, David R. (creator)
et al. (creator)
Date Issued 2014-10 (iso8601)
Note To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work. This is the publisher’s final pdf. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/molecular-phylogenetics-and-evolution.
Abstract The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the
kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two
protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available
sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently
recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, ‘Candelariomycetidae’). Maximum likelihood phylogenetic analyses on four
multigene datasets assembled using a cumulative supermatrix approach with a progressively higher
number of species and missing data (5-gene, 5 + 4-gene, 5 + 4 + 3-gene and 5 + 4 + 3 + 2-gene datasets)
show that the current classification includes non-monophyletic taxa at various ranks, which need to be
recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two
newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families
(Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes
inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered
here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated
with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A
revised schematic classification at the family level in the phylogenetic context of widely accepted and
newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with
an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which
sequences were available for all five targeted genes and ending with the addition of taxa for which only two
genes have been sequenced) revealed relatively stable relationships for many families and orders.
However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial
loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships),
potentially including the misplacements of several taxa. Future phylogenetic analyses should include
additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part
of this study, a new module (‘‘Hypha’’) of the freely available Mesquite software was developed to compare
and display the internodal support values derived from this cumulative supermatrix approach.
Genre Article
Topic Classification
Identifier Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press