Record Details

Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Perturbations

ScholarsArchive at Oregon State University

Field Value
Title Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Perturbations
Names Perlin, Natalie (creator)
de Szoeke, Simon P. (creator)
Chelton, Dudley B. (creator)
Samelson, Roger M. (creator)
Skyllingstad, Eric D. (creator)
O'Neill, Larry W. (creator)
Date Issued 2014-11 (iso8601)
Note This is the publisher’s final pdf. The published article is copyrighted by the American Meteorological Society and can be found at: http://journals.ametsoc.org/loi/mwre.
Abstract The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current
region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy
Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced
wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations,
validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface
temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of s[subscript U] = 0.42 m s⁻¹ °C⁻¹ for wind to mesoscale SST perturbations. The eight model configurations produce coupling
coefficients varying from 0.31 to 0.56 m s⁻¹ °C⁻¹. Most closely matching QuikSCAT are a WRF simulation
with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (s[subscript U] = 0.40 m s⁻¹ °C⁻¹), and
a COAMPS simulation with a form of Mellor–Yamada parameterization (s[subscript U] = 0.38 m s⁻¹ °C⁻¹). Model
rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind
stress, are similar to that based on s[subscript U]. In all simulations, the atmospheric potential temperature response to
local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast,
the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m.
The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent
eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute
magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.
Genre Article
Identifier Perlin, N., de Szoeke, S. P., Chelton, D. B., Samelson, R. M., Skyllingstad, E. D., & O’Neill, L. W. (2014). Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Perturbations. Monthly Weather Review, 142(11), 4284-4307. doi:10.1175/MWR-D-13-00332.1

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press