Record Details

The role of body size in the foraging strategies and management of avian herbivores : a comparison of dusky Canada geese (Branta canadensis occidentalis) and cackling geese (B. hutchinsii minima) wintering in the Willamette Valley of Oregon

ScholarsArchive at Oregon State University

Field Value
Title The role of body size in the foraging strategies and management of avian herbivores : a comparison of dusky Canada geese (Branta canadensis occidentalis) and cackling geese (B. hutchinsii minima) wintering in the Willamette Valley of Oregon
Names Mini, Anne E. (creator)
Dugger, Bruce D. (advisor)
Date Issued 2012-10-11 (iso8601)
Note Graduation date: 2013
Abstract Body size explains much of the interspecific variation in the physiology, behavior, and morphology of birds, such as metabolic rate, diet selection, intake rate, gut size, and bill size. Based on mass-specific metabolic requirements and relative energetic costs of activities, being a certain body size has both advantages and disadvantages. In particular, avian herbivores such as geese possess a relatively simple digestive system, consume foods with low digestibility and poor nutrient content, and have increased energetic demands compared to other bird taxa; therefore, any effects of body size on foraging strategies should be readily apparent in this foraging guild. The influence of body size on the behavior and management of Canada Geese (Branta canadensis) and Cackling Geese (B. hutchinsii) as avian herbivores has not been well studied.
My dissertation explores the role of body size in comparative foraging behavior, habitat selection, and winter conservation planning for two congeneric geese, the Dusky Canada Goose (B. c. occidentalis; hereafter Duskys) and the Cackling Goose (B. h. minima; hereafter Cacklers). These two taxa share the same over-winter foraging environment (grass seed fields) in the same restricted geographic area (the Willamette Valley) during winter. Duskys and Cacklers differ by more than a factor of two in body size and have different relative bill sizes and social organization. Because of smaller body size, Cacklers have greater relative energy demands and less fasting endurance compared to Duskys; however, Cacklers have comparatively low energetic costs for flight and transport. Duskys, however, have higher total energy requirements than Cacklers. Additionally, Cacklers form large, high-density flocks and have a total over-wintering population size in the study area of about 200,000. Duskys occur in relatively small family groups and have a total over-wintering population size of about 13,000.
My study demonstrated that interspecific differences in body size between Cacklers and Duskys was associated with differences in foraging behavior, movements, and habitat selection. Cacklers foraged a greater percentage of time (30%) in all habitats and across the entire winter compared to Duskys. Cacklers had higher peck rates (up to 100 pecks min⁻¹ greater) than Duskys in all foraging habitats expect pasture. The pecking rate of Cacklers was greatest in fields of young grass (200 pecks min⁻¹), which may indicate that Cacklers had relatively high intake rates in this foraging habitat. Based on differences in foraging behavior among habitats, Cacklers may have the foraging strategy of energy intake maximizers, whereas the foraging strategy of Duskys is more towards time-energy expenditure minimizers, at least for part of the winter. Cacklers moved across the landscape very differently from
Duskys, exhibiting less site fidelity and greater commuting distances to foraging areas. Cacklers showed a preference for young grass during all periods of the winter, reaffirming that Cacklers are specialized grazers on short green forage, whereas Duskys preferred young grass and pasture. Fields of young grass were the preferred foraging habitat of Cacklers, had less standing crop biomass, and may have enabled higher foraging efficiencies, which may have led to higher intake rates.
The ability of the landscape to support wintering geese changed across the winter because total available plant biomass fluctuated with the rate of grass regrowth. The estimated carrying capacity of the landscape for geese decline by almost one-half during mid-winter (mid-December to mid-February) compared to early winter or late winter periods. Although Cacklers have lower individual energy requirements compared to Duskys, due to a much larger target population size, Cacklers required 89% more foraging habitat than Duskys. Forage requirements encountered a bottleneck during mid-winter, when grass regrowth rates were low and day length was short. Commensurate with this pattern of forage availability, goose body condition declined during the mid-winter period. To support Pacific Flyway target populations for geese, approximately 18,000 ha of total grazing habitat in young and mature grass is needed in the Willamette Valley to support a total over-wintering population composed of 340,000 geese belonging to four subspecies.
The role of body size in influencing the foraging behavior and decisions of over-wintering geese has important implications for conservation planning of goose populations. Small-bodied Cacklers are selective in field choice, yet more likely to
redistribute across the landscape. Disturbances (e.g., hunting, hazing, or predation) will have a disproportionate effect on the movements of smaller-bodied geese compared to larger geese. These characteristics of Cacklers will make conservation planning to retain geese on public land more difficult. Coordinated management with private landowners and farming practices that maximize preferred goose foraging habitat on public lands may attract geese to utilize protected areas and minimize conflicts with agriculture in the Willamette Valley. Availability of resources during critical periods in winter is an important factor affecting the distribution of geese, but may affect small and large bodied geese differently. Management could be targeted during these critical time periods. By considering the role of body size in the context of life history characteristics, foraging behavior and habitat selection, appropriate management strategies can be developed and implemented to reduce the effects of agricultural depredation by geese, while promoting the future conservation of wintering geese in the Willamette Valley.
Genre Thesis/Dissertation
Topic body size
Identifier http://hdl.handle.net/1957/35459

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press