Record Details

Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model

ScholarsArchive at Oregon State University

Field Value
Title Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model
Names Shell, Karen M. (creator)
Somerville, Richard C. J. (creator)
Date Issued 2007 (iso8601)
Abstract Airborne mineral dust can influence the climate by altering the radiative properties of the atmosphere, but the magnitude of the effect is uncertain. An idealized global model is developed to study the dust-climate system. The model determines the dust longwave and shortwave direct radiative forcing, as well as the resulting temperature changes, based on the specified dust distribution, height, and optical properties. Comparisons with observations and general circulation results indicate that the model produces realistic results for the present-day dust distribution as well as for volcanic aerosols. Although the model includes many simplifications, it can still provide insight into dust-climate system behavior. Recent observations suggest that dust may absorb less solar radiation than previously thought. Experiments with the model suggest that previous studies which used more absorbing dust may be underestimating the effect of dust. Increasing the solar single scattering albedo value from 0.85 to 0.97, corresponding to recent measurements, more than doubles the modeled global average top-of-the-atmosphere (TOA) shortwave direct forcing for the present-day dust distribution, while the surface shortwave forcing is halved. The corresponding temperature decreases are larger for the larger single scattering albedo, and the latent and sensible heat fluxes decreases are smaller. The dust forcing and climate response are approximately linear with respect to optical depth. However, the relationship depends on the relative magnitudes of shortwave versus longwave TOA forcing. Thus the net TOA forcing alone does not determine the steady state climate response.
Genre Article
Identifier Shell, K. M., and R. C. J. Somerville (2007), Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model, Journal of Geophysical Research, 112, D03205, doi:10.1029/2006JD007197.

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press