Record Details
Field | Value |
---|---|
Title | INDOEX aerosol optical depths and radiative forcing derived from AVHRR |
Names |
Tahnk, William Richard
(creator) Coakley, James A. Jr (advisor) |
Date Issued | 2001-02-02 (iso8601) |
Note | Graduation date: 2001 |
Abstract | The Indian Ocean Experiment (INDOEX) had as a primary objective determining the radiative forcing due to anthropogenic aerosols over climatologically significant space and time scales: the Indian Ocean during the winter monsoon, January-March. During the winter monsoon, polluted, low-level air from the Asian subcontinent blows over the Arabian Sea and Indian Ocean. As part of INDOEX, aerosol optical depths were derived from Advanced Very High Resolution Radiometer (AVHRR) data for the cloud-free ocean regions. The AVHRR radiances were first calibrated using the interior zone of the Antarctic and Greenland ice sheets, which proved to be radiometrically stable calibration targets. Optical depths were derived by matching the observed radiances to radiances calculated for a wide range of optical depths and viewing geometry. Optical depths derived with the AVHRR were compared with those derived with NASA's Aerosol Robotic Network (AERONET) CIMEL instrument at the Center for Clouds, Chemistry, and Climate's Kaashidhoo Observatory, as well as with other surface and shipboard observations taken in the INDOEX region. The retrieved and surface-based optical depths agreed best for a new 2-channel, 2- aerosol model scheme in which the AVHRR observations at O·64 and O·84 microns were used to determine relative amounts of marine and polluted continental aerosol and then the resulting aerosol mixture was used to derive the optical depths. Broadband radiative transfer calculations for the mixture of marine and polluted continental aerosols were combined with the 0·64 and 0·84-micron AVHRR radiances to determine the radiative forcing due to aerosols in the INDOEX region. Monthly composites of aerosol optical depth and top of the atmosphere, surface, and atmospheric radiative forcing were derived from calibrated AVHRR radiances for January-March 1996-2000. An inter-annual variability in the magnitude and spatial extent of high value regions is noted for derived optical depths and radiative forcing, with highest values reached in 1999, particularly in the Bay of Bengal which during the IFP was covered by plumes from Indochina. Frequency distributions of the optical depth for 1⁰ x 1⁰ latitude-longitude regions are well represented by gamma distribution functions. The day-to-day and year-to-year variability of the optical depth for such regions is correlated with the long term average optical depth. Interannual variability of the monthly mean optical depths for such regions is found to be as large as the day to day. |
Genre | Thesis/Dissertation |
Topic | Aerosols -- Optical properties |
Identifier | http://hdl.handle.net/1957/28702 |