Record Details

Diagnosis of the Three-Dimensional Circulation in Mesoscale Features with Large Rossby Number

ScholarsArchive at Oregon State University

Field Value
Title Diagnosis of the Three-Dimensional Circulation in Mesoscale Features with Large Rossby Number
Names Shearman, R. Kipp (creator)
Barth, John A. (creator)
Allen, J. S. (creator)
Haney, Robert L. (creator)
Date Issued 2000-11 (iso8601)
Abstract Several diagnoses of three-dimensional circulation, using density and velocity data from a high-resolution, upper-ocean SeaSoar and acoustic Doppler current profiler (ADCP) survey of a cyclonic jet meander and adjacent cyclonic eddy containing high Rossby number flow, are compared. The Q-vector form of the quasigeostrophic omega equation, two omega equations derived from iterated geostrophic intermediate models, an omega equation derived from the balance equations, and a vertical velocity diagnostic using a primitive equation model in conjunction with digital filtering are used to diagnose vertical and horizontal velocity fields. The results demonstrate the importance of the gradient wind balance in flow with strong curvature (high Rossby number). Horizontal velocities diagnosed from the intermediate models (the iterated geostrophic models and the balance equations), which include dynamics between those of quasigeostrophy and the primitive equations, are significantly reduced (enhanced) in comparison with the geostrophic velocities in regions of strong cyclonic (anticyclonic) curvature, consistent with gradient wind balance. The intermediate model relative vorticity fields are functionally related to the geostrophic relative vorticity field; anticyclonic vorticity is enhanced and cyclonic vorticity is reduced. The iterated geostrophic, balance equation and quasigeostrophic vertical velocity fields are similar in spatial pattern and scale, but the iterated geostrophic (and, to a lesser degree, the balance equation) vertical velocity is reduced in amplitude compared with the quasigeostrophic vertical velocity. This reduction is consistent with gradient wind balance, and is due to a reduction in the forcing of the omega equation through the geostrophic advection of ageostrophic relative vorticity. The vertical velocity diagnosed using a primitive equation model and a digital filtering technique also exhibits reduced magnitude in comparison with the quasigeostrophic field. A method to diagnose the gradient wind from a given dynamic height field has been developed. This technique is useful for the analysis of horizontal velocity in the presence of strong flow curvature. Observations of the nondivergent ageostrophic velocity field measured by the ADCP compare closely with the diagnosed gradient wind ageostrophic velocity.
Genre Article
Identifier Shearman, R. Kipp, John A. Barth, J. S. Allen, Robert L. Haney, 2000: Diagnosis of the Three-Dimensional Circulation in Mesoscale Features with Large Rossby Number. Journal of Physical Oceanography, 30, 2687–2709.

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press