Record Details

Implications of a nonlinear ⁴⁰Ar/³⁹Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots

ScholarsArchive at Oregon State University

Field Value
Title Implications of a nonlinear ⁴⁰Ar/³⁹Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots
Names Koppers, Anthony A. P. (creator)
Duncan, Robert A. (creator)
Steinberger, Bernhard (creator)
Date Issued 2004-06-19 (iso8601)
Note Copyrighted by American Geophysical Union.
Abstract The Louisville seamount trail has been recognized as one of the key examples of hot spot volcanism, comparable to the classic volcanic Hawaiian-Emperor lineaments. The published total fusion ⁴⁰Ar/³⁹Ar data of Watts et al. [1988] showed an astonishing linear age progression, firmly establishing Louisville as a fixed hot spot in the South Pacific mantle. We report new 40Ar/39Ar ages based on high-resolution incremental heating 40Ar/39Ar dating for the same group of samples, showing a marked increase in both precision and accuracy. One of the key findings in our reexamination is that the age progression is not linear after all. The new data show a significantly decreased ‘‘apparent’’ plate velocity for the Louisville seamount trail older than 62 Ma but confirm the linear trend between 47 Ma and the present day (although based on only three samples over 2150 km). The most recent volcanic activity in the Louisville seamount trail has now been dated at 1.11 ± 0.04 Ma for the most southeastern seamount located at 50°26’S and 139°09’W. These results indicate that the Louisville age progression should be interpreted on the basis of both plate and hot spot motion. In this paper we examine our new results in conjunction with the numerical mantle flow models of Steinberger et al. [2004] that also predict marked deviations from simple linear age progressions. With these models we can achieve a good fit to the geometry of both the Hawaiian and Louisville seamount trails and their age progressions as well as the ~15° paleolatitudinal shift observed by Tarduno et al. [2003] for the Hawaiian hot spot between 80 and 47 Ma. If the model is restricted to Pacific hot spots only, we can improve the fit to the nonlinear age trend for the Louisville seamount trail by allowing an additional rotation change of the Pacific plate around 62 Ma and by decreasing the initiation age of the Louisville plume from 120 to 90 Ma. This improved model features a significant eastward hot spot motion of ~5° between 80 and 30 Ma for the Louisville hot spot, which is quite dissimilar to the southward motion of the Hawaiian hot spot during the same time interval, followed by a minor ~2° latitudinal shift over the last 30 Myr. If hot spot tracks are considered globally, the age trend observed for the oldest part of the Louisville seamount trail does not entirely follow the numerical model predictions. This may indicate some remaining inaccuracies in the global plate circuit, but it may also indicate that the Louisville hot spot experienced a motion somewhat different than in the numerical model: faster in the interval between 62 and 47 Ma but slower before that.
Genre Article
Topic ⁴⁰Ar/³⁹Ar geochronology
Identifier Koppers, A. A. P., R. A. Duncan, and B. Steinberger (2004), Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots, Geochem. Geophys. Geosyst., 5, Q06L02.

© Western Waters Digital Library - GWLA member projects - Designed by the J. Willard Marriott Library - Hosted by Oregon State University Libraries and Press